

ASTRONOMY

The Expanding Universe

The universe began very hot, small, and dense, with no stars, atoms, form, or structure (called a "singularity").

MATERIALS:

- \circ 12" round balloon
- o Black marker
- Paper clip
- Measuring tape (centimeters side) or ruler (using centimeters side)
- Stopwatch (you can use an app on your phone for this)
- o Data table SHEET

PROCEDURE:

BEFORE INFLATING THE BALLOON:

- 1. With the marker make three dots on the balloon (1-2-3). *Don't put the dots on a straight line*. These will be the Galaxies.
- 2. Measure the distance of the dots in cm.
- 3. Then draw a wave $\sqrt{}$ this will represent the "*redshift*".
- 4. Measure the wavelength from end to end.

INFLATING THE BALLOON:

- 1. Take the stopwatch or app before blowing slowly into the balloon; take the time lapse for every circumference as seen on data sheet.
- 2. Blow the balloon to a circumference of 40cm and make the measurements, blow to a 50cm circumference and make the measurements and last blow to a 60cm circumference and make the last measurements. Bend the end of the balloon down and paper clip it so that no air escapes.
 - Remember the measurements are both on the dots and the wave. See Data Sheet
- To calculate the average speed of the galaxies take the last measurement of 60cm circumference (d₄) minus measurement before inflating the balloon (d₁) and divide by the total time (t).

 $\frac{d_4 - d_1}{t}$

Expanding Universe Data Sheet

Distance between Galaxies	Measurement before inflating the balloon d1	Measurement at 40 cm circumference		Measurement at 50 cm circumference		Measurement at 60 cm circumference d₄	Average Speed of Galaxies (d₄-d₁/t)
1-2	cm	cm		cm		cm	cm/sec.
2-3	cm	cm		cm		cm	cm/sec.
3-1	cm	cm		cm		cm	cm/sec.
Wavelength	cm	cm		cm		cm	cm/sec.
Time Lapsesec. to		940cms		ec. to 50cm		sec. to 60cm	Total Time sec.

Answer the following questions:

- 1. If the dots represent galaxies, do they get larger as the balloon expands? Why do you think this is or is not?
- 2. What relationship exists between the speed of the galaxies moving apart and their initial distance from one another?
- 3. The wave represents the light emitted from the galaxies, what do you think is happening in this demonstration? Why? (Use videos as reference)
- 4. What happens to the wavelength when the distance of the galaxies increases?